Study on the Method for Calculating the Flexural Rigidity of Reinforced Concrete Truss Hollow Composite Slabs
Author(s): |
Xudong Chen
Yunlin Liu Qinyong Ma Deyi Wu Guodong Shi |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 18 February 2025, n. 4, v. 15 |
Page(s): | 586 |
DOI: | 10.3390/buildings15040586 |
Abstract: |
A static performance experimental study was conducted on six simply supported reinforced concrete truss hollow composite slabs to analyze their flexural rigidity. The study investigated the effects of the slab thickness, the dimensions of the hollow thin-walled boxes, and the composite interfaces on the flexural rigidity of the hollow composite slabs. The flexural rigidity was calculated using methods from American standards, Chinese standards, and the relevant literature, and the results were compared with the experimental data. Based on the experimental findings, a method for calculating the flexural rigidity of hollow composite slabs using a reduced moment of inertia equation was proposed, and the calculated results showed good agreement with the experimental results. The research indicates that the composite interface and the size of the hollow thin-walled boxes have minimal influence on the flexural performance of hollow composite slabs, while the slab thickness significantly impacts their flexural performance. By employing the effective moment of inertia method and substructure calculation theory, a calculation method for the flexural rigidity of hollow composite slabs was established, demonstrating high accuracy. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.13 MB
- About this
data sheet - Reference-ID
10820738 - Published on:
11/03/2025 - Last updated on:
11/03/2025