0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Strength Enhancement of Interlocking Hollow Brick Masonry Walls with Low-Cost Mortar and Wire Mesh

Author(s): ORCID
ORCID


ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 12, v. 6
Page(s): 166
DOI: 10.3390/infrastructures6120166
Abstract:

Cement–clay Interlocking Hollow Brick Masonry (CCIHBM) walls are characterized by poor mechanical properties of bricks and mortar. Their performance is observed to be unsatisfactory under both gravity and seismic loads. There is an urgent need to develop sustainable, environmentally friendly, and low-cost strengthening materials to alter the structural behaviour of brick masonry walls in terms of strength and ductility. The results of an experimental investigation conducted on the diagonal compressive response of CCIHBM walls are presented in this study. In this experimental study, a total of six CCIHBM walls were constructed using cement–clay interlocking hollow bricks. One was tested as a control or reference wall, whereas the remaining walls were strengthened using cement mortar. In some walls, the cement mortar was also combined with the wire mesh. The research parameters included the type of Ordinary Portland Cement (OPC) (Type 1 and Type 2), thickness of cement mortar (10 mm and 20 mm), and layers of wire mesh (one and three layers). The experimental results indicate that control or unstrengthened CCIHBM walls failed in a very brittle manner at a very low ultimate load and deformation. The control CCIHBM wall, i.e., W-CON, failed at an ultimate load of 247 kN, and corresponding deflection was 1.8 mm. The strength and ductility of cement mortar and wire mesh-strengthened walls were found to be higher than the reference CCIHBM wall. For example, the ultimate load and deformation of cement-mortar-strengthened wall were found to be 143% and 233% higher than the control wall, respectively. Additionally, the ultimate failure modes of cement mortar and wire mesh strengthened were observed as ductile as compared to the brittle failure of reference wall or unstrengthened CCIHBM wall, which increased by 66% and 150% as compared with the control wall.

Copyright: © 2021 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10722961
  • Published on:
    22/04/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine