Pounding Risk Assessment through Soil–Structure Interaction Analysis in Adjacent High-Rise RC Structures
Author(s): |
Mehdi Ebadi-Jamkhaneh
|
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 25 August 2024, n. 9, v. 14 |
Page(s): | 2779 |
DOI: | 10.3390/buildings14092779 |
Abstract: |
This study investigates the seismic response of two 20-story adjacent reinforced concrete structures with differing lateral load-bearing systems, emphasizing the influence of soil–structure interaction. In total, 72 numerical models explored the combined effects of 9 earthquake motions, 4 soil types, and 2 structural designs. Analytical fragility curves revealed superior seismic resilience for the structure with shear walls compared to the bare frame structure. Shear walls increased the capacity to withstand earthquakes by up to 56% for each damage level. Soil behavior analysis investigated the effect of soil properties. Softer soil exhibited larger deformations and settlements compared to stiffer soil, highlighting soil ductility’s role in the system’s response. The study further assessed potential pounding between structures. The connection between structural stiffness and soil deformability significantly affected pounding risk. The provided gap (350 mm) proved insufficient to prevent pounding under various earthquake scenarios and soil types, leading to damage to RC components. These findings emphasize the crucial need to consider both structural systems and soil properties in seismic assessments. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
9.25 MB
- About this
data sheet - Reference-ID
10799865 - Published on:
23/09/2024 - Last updated on:
23/09/2024