^ Numerical Study and Field Monitoring of the Ground Deformation Induced by Large Slurry Shield Tunnelling in Sandy Cobble Ground | Structurae
0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Study and Field Monitoring of the Ground Deformation Induced by Large Slurry Shield Tunnelling in Sandy Cobble Ground

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-12
DOI: 10.1155/2019/4145721
Abstract:

This paper presents the ground deformation induced by the large slurry shield tunnelling with a diameter of about 12 m in urban areas, which may challenge the safety of the existing nearby constructions and infrastructures. In this study, the ground deformation is analyzed by a three-dimensional finite difference model, involving the simulation of tunnelling advance, grouting, and grouting hardening. The transverse settlement, longitudinal settlement, and horizontal displacement of the ground are analyzed by comparing the simulation results with the field measurements in the Rapid Transit Line Project from Beijing Railway station to West Beijing Railway station in China. The numerical model proposed in this paper could well predict the ground deformation induced by large slurry shield tunnelling. The results show that the main transverse settlement occurs within the zone about 1.5 times of the excavation diameter, and the settlement during the passage of the shield and the tail void plays a most important role in the excavation process.

Copyright: © 2019 Chengping Zhang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10299103
  • Published on:
    06/02/2019
  • Last updated on:
    02/06/2021