0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical and Experimental Study on the Indoor Climate in a Classroom with Mixing and Displacement Air Distribution Methods

Author(s): ORCID

ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 12
Page(s): 1314
DOI: 10.3390/buildings12091314
Abstract:

One main challenge of air distribution in classrooms is to guarantee ventilation performance under different usage conditions. In this study, the indoor climate in summer and winter conditions with different occupancy densities in the classroom is presented. Thermal condition measurements of a half-size classroom were performed in a test room with four air suppliers: wall-grilles, ceiling diffusers, perforated duct diffusers, and displacement ventilation. Those measured data were used for CFD validation of the whole classroom. With CFD simulations, indoor climate parameters with different air diffusers are compared in summer and winter conditions. The results show that displacement ventilation gives the best performance in the occupied zone. The air change efficiency can be reached with displacement ventilation of 1.4 and of only 1 with the other three air diffusers. The air velocities were reasonably low (<0.3 m/s), and the indoor was quite uniform with ceiling diffusers, which is another well-performing solution for classrooms. Corridor wall-grilles give uniform thermal conditions but can have high velocities (0.4 m/s) on the perimeter side of the room space. The air distribution from the perforated duct diffuser is unstable, which causes high local draft (over 20%) in the occupied zone.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10692671
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine