0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Innovative Fragility-Based Method for Failure Mechanisms and Damage Extension Analysis of Bridges

Author(s): ORCID
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 9, v. 7
Page(s): 122
DOI: 10.3390/infrastructures7090122
Abstract:

The seismic assessment of existing bridges is of the utmost importance to characterise the main structural deficiencies, estimate the risk, prioritise retrofit interventions, or estimate losses and repair costs in case of earthquakes. The above tasks require information on the damage mechanisms likely to occur as well as on the damage extent over the structure. Such types of information are generally not provided by classical fragility analysis, which is mainly focused on the evaluation of the global performance of the bridge. In this paper, a systematic probabilistic methodology for the evaluation of bridge fragility is proposed. The methodology aims at offering insight into the failure mechanisms most likely to occur and the evolution and extent of damage within the bridge structure. First, a mathematical description of the proposed analysis methods is given, then an application to a realistic case study—a reinforced concrete multi-span simply supported deck link-slab bridge—is provided to illustrate the applicability of the tool. A nonlinear 3D finite element model is developed, and a multiple-stripe (nonlinear dynamic) analysis is performed by using a stochastic bidirectional seismic input. The results highlight the suitability of the proposed methodology to reveal the main structural deficiencies, the relations among different failure mechanisms (involving piers, bearings, abutments, etc.), and the expected damage extent.

Copyright: © 2022 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10722822
  • Published on:
    22/04/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine