Importance of Distribution Type on Bearing Capacity of an Embedded Foundation in Spatially Varying Soils
Author(s): |
Jiwei Han
Xiaoming Liu Yongxin Wu Xuhui Zhou |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2020, v. 2020 |
Page(s): | 1-15 |
DOI: | 10.1155/2020/8858325 |
Abstract: |
The objective of this paper is to investigate the effect of soil variability on bearing capacity of an embedded foundation in the presence of nonstationary undrained shear strength. The nonstationary undrained shear strength is simulated by a nonstationary random field generator based on the spectral representation method. An embedded foundation buried into the soil to two times of width is presented to investigate the influence of spatially variable undrained shear strength on bearing capacity. Firstly, Monte Carlo simulations are carried out to discuss the effect of distribution type, nonstationary gradient parameter, and horizontal autocorrelation length on the bearing capacity from the standpoint of mean value and standard deviation. Then, the influence of the distribution type on the failure probability of nonstationary random soil is also investigated, with the failure probability for the Beta distribution being demonstrated to be always larger than that for the Lognormal and Gamma distribution. |
Copyright: | © 2020 Jiwei Han et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.92 MB
- About this
data sheet - Reference-ID
10427925 - Published on:
30/07/2020 - Last updated on:
02/06/2021