Experimental Investigation of Neutralisation of Concrete with Fly Ash as Fine Aggregate in Freeze-Thaw Environment
Author(s): |
Dongsheng Zhang
Mingjie Mao Qiuning Yang Wenbo Zhang Pengfei Han |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2019, v. 2019 |
Page(s): | 1-12 |
DOI: | 10.1155/2019/6860293 |
Abstract: |
To study the durability of concrete with fly ash as fine aggregate under alternate freeze-thaw and carbonation, freeze-thaw and carbonation cyclic tests are conducted to explore variation characteristics such as relative dynamic modulus of elasticity and neutralisation depth. The influence coefficient (λC) of carbonation on concrete freeze-thaw damage and the influence coefficient (λF) of freeze-thaw on concrete neutralisation are introduced. In addition, scanning electron microscopy is performed to reveal the deterioration mechanism of the alternating effect. Finally, through a regression analysis of test data, the mathematical expression of the composite damage coefficientkFunder alternate freeze-thaw and carbonation is obtained. Based on these findings, a prediction model of the neutralisation depth of concrete is established with number of freeze-thaw cycles and water-cement ratio as parameters. The values calculated through this model and the values measured in the tests are highly correlated. This provides a theoretical reference and basis for the analysis of concrete durability in a multifactor environment. |
Copyright: | © 2019 Dongsheng Zhang et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.37 MB
- About this
data sheet - Reference-ID
10315408 - Published on:
28/06/2019 - Last updated on:
02/06/2021