0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effects of Water Inrush from Tunnel Excavation Face on the Deformation and Mechanical Performance of Shield Tunnel Segment Joints

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2017
Page(s): 1-18
DOI: 10.1155/2017/5913640
Abstract:

Water inrush from the excavation face often occurs in the current shield construction of metro tunnels. In this study, the discontinuity of shield tunnel lining and the interaction between the tunnel segments, the grouting layer, and the surrounding rock are considered. Based on the 3D nonlinear contact theory, a hybrid model of the shield tunnel is constructed. Considering the fluid-solid coupling effect of water and soil, the influences of different water head differences on the mechanical performance and deformation of segments and joints in the shield tunnel are studied. The water gushing from the excavation face leads to vertical convergence of the cross-sectional area of the shield tunnel, and joint opening and dislocation result in sharp decrease of the waterproof capacity of joints. Meanwhile, the stress in the vicinity of segment joints increases sharply, and local cracks occur in the segment lining. The axial force, shear force, and bending moment in the joint bolt are also significantly increased. Based on the current metro standard and the computational results in this study, an emergency control criterion is put forward by means of controlling the discharge of water: the water head difference over the excavation face is required less than 4.6 M.

Copyright: © 2017 Tingsheng Zhao et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10176842
  • Published on:
    07/12/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine