0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Construction of Uniaxial Interaction Diagram for Slender Reinforced Concrete Column Based on Nonlinear Finite Element Analysis

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-10
DOI: 10.1155/2021/3275512
Abstract:

Slender reinforced concrete column may fail in material failure or instability failure. Instability failure is a common problem which cannot be analyzed with first_order analysis. So, second-order analysis is required to analyze instability failure of slender RC column. The main objective of this study was to construct uniaxial interaction diagram for slender reinforced concrete column based on nonlinear finite element analysis (FEA) software. The key parameters which were studied in this study were eccentricity, slenderness ratio, steel ratio, and shape of the column. Concrete damage plasticity (CDP) was utilized in modeling the concrete. Material nonlinearity, geometric nonlinearity, effect of cracking, and tension stiffening effect were included in the modeling. The results reveal that, as slenderness ratio increases, the balanced moment also increases, but the corresponding axial load was decreased. However, increasing the amount of steel reinforcement to the column increases the stability of the column and reduces the effect of slenderness ratio. Also, the capacity of square slender RC column is larger than rectangular slender RC column with equivalent cross section. However, the result is close to each other as slenderness ratio increased. Finally, validation was conducted by taking a benchmark experiment, and it shows that FEA result agrees with the experimental by 85.581%.

Copyright: © Bedaso Ahmed et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10638221
  • Published on:
    30/11/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine