0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Composition, Structure and Properties of Geopolymer Concrete Dispersedly Reinforced with Sisal Fiber

Author(s): ORCID
ORCID
ORCID
ORCID

ORCID


ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 14
Page(s): 2810
DOI: 10.3390/buildings14092810
Abstract:

The application of geopolymer composites in the construction of environmentally sustainable buildings and low-carbon structures has generated considerable interest, presenting an alternative and eco-friendly approach to composite materials. The purpose of this research is to develop a new composition of geopolymer concrete, dispersedly reinforced with sisal fiber, and investigate its structure and physical and mechanical properties. To evaluate the effectiveness of the proposed compositions, the fresh properties of the geopolymer concrete mixture—density and slump—and the properties of the hardened composite, namely, the compressive strength, flexural strength and water absorption, were studied. The most rational composition of the alkaline activator was established, and sisal fiber (SF) was protected from alkaline degradation by adding styrene-acrylic copolymer at an amount of 5% and microsilica at an amount of 3% to the concrete mixture. It was determined that the most optimal SF content was 1.0%. The compressive strength exhibited a maximum increase of 12.8%, the flexural strength showed a significant increase of 76.5%, and the water absorption displayed a decrease of 10.3%. The geopolymer fiber-reinforced concrete developed in this study is an environmentally friendly replacement for traditional types of concrete with cement binders and can be used for the manufacture of small architectural forms and landscaping elements.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10799858
  • Published on:
    23/09/2024
  • Last updated on:
    23/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine