Advances in Retrofitting Strategies for Energy Efficiency in Tropical Climates: A Systematic Review and Analysis
Author(s): |
Katherine Chung-Camargo
Jinela González Miguel Chen Austin Cristina Carpino Dafni Mora Natale Arcuri |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 19 June 2024, n. 6, v. 14 |
Page(s): | 1633 |
DOI: | 10.3390/buildings14061633 |
Abstract: |
The global construction industry significantly contributes to energy consumption and greenhouse gas emissions, necessitating immediate action for sustainable development. Recognizing the impact of buildings on emissions, the United Nations has set ambitious energy-related goals for 2030. Retrofitting buildings emerges as a strategic method for reducing energy consumption, offering lower environmental impact and life cycle costs. However, retrofitting is a complex process influenced by diverse factors such as policies, available resources, techniques, building-specific data, and uncertainties. Thus, this paper reviews the existing literature on retrofitting strategies for tropical and humid climates to identify effective approaches for enhancing energy efficiency, thermal comfort, and overall building performance in these regions. Through comprehensive analyses, including bibliometric analysis using VOSviewer version 1.6.18 and systematic assessments, this study investigates various retrofitting strategies. This study categorizes tropical climates into Af (Tropical Rainforest Climate) and Aw (Tropical Savanna Climate) based on the Köppen climate classification. It reveals distinct emphases, with Af climates concentrating on office buildings and Aw climates prioritizing residential structures. Passive strategies were predominantly favored in office buildings, with glazing being the most commonly implemented approach. Residential structures, on the other hand, adopted a combination of passive strategies such as phase change materials along with active methods like appliance replacement. Educational buildings tended to rely on passive strategies, including roof covers, shading, and glazing. The absence of specific cost values underscores the importance of establishing baseline metrics, revealing significant challenges in retrofit techniques. This study further highlights an opportunity to explore passive methods in educational buildings, stressing the need for comprehensive guidelines, especially in institutional settings. Moreover, it emphasizes the urgency for ambitious regulations to address carbon emissions and optimize energy efficiency in tropical climates. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.83 MB
- About this
data sheet - Reference-ID
10788019 - Published on:
20/06/2024 - Last updated on:
20/06/2024