0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

A machine learning-based methodology of integrating loading data and load effect data for long span bridge assessment

A machine learning-based methodology of integrating loading data and load effect data for long span bridge assessment
Autor(en): , , ,
Beitrag für IABSE Congress: Engineering for Sustainable Development, New Delhi, India, 20-22 September 2023, veröffentlicht in , S. 873-881
DOI: 10.2749/newdelhi.2023.0873
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 1.1 MB

A number of long span bridges around the world have extensive structural health monitoring (SHM} systems installed. These bridges are complex structures under complex operational and environmental ...
Weiterlesen

Bibliografische Angaben

Autor(en): (Arup, Hong Kong, China)
(Arup, Hong Kong, China)
(Arup, Hong Kong, China)
(Arup, Hong Kong, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Engineering for Sustainable Development, New Delhi, India, 20-22 September 2023
Veröffentlicht in:
Seite(n): 873-881 Anzahl der Seiten (im PDF): 9
Seite(n): 873-881
Anzahl der Seiten (im PDF): 9
DOI: 10.2749/newdelhi.2023.0873
Abstrakt:

A number of long span bridges around the world have extensive structural health monitoring (SHM} systems installed. These bridges are complex structures under complex operational and environmental conditions, making it challenging to process and interpret the monitoring data obtained. This paper presents a machine learning (ML}-based methodology of linking bridge loading data with measured load effect data for long span bridge assessment, developed using the monitoring data obtained from the 1377 m main span Tsing Ma Bridge in Hong Kong. The proposed methodology includes supervised, unsupervised and semi-supervised learning techniques to enable and automate the identification, classification and segmentation of different live load effects. The developed methodology can assist with more realistic load rating and fatigue assessment and facilitate the operation and maintenance (O&M} of long span bridges.

Stichwörter:
Ermüdungsnachweis