Urban wind field prediction based on sparse sensors and physics‐informed graph‐assisted auto‐encoder
Autor(en): |
Huanxiang Gao
(Artificial Intelligence for Wind Engineering (AIWE) Lab, School of Civil and Environmental Engineering Harbin Institute of Technology Shenzhen China)
Gang Hu (Artificial Intelligence for Wind Engineering (AIWE) Lab, School of Civil and Environmental Engineering Harbin Institute of Technology Shenzhen China) Dongqin Zhang (Artificial Intelligence for Wind Engineering (AIWE) Lab, School of Civil and Environmental Engineering Harbin Institute of Technology Shenzhen China) Wenjun Jiang (Artificial Intelligence for Wind Engineering (AIWE) Lab, School of Civil and Environmental Engineering Harbin Institute of Technology Shenzhen China) K. T. Tse (Department of Civil and Environmental Engineering The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China) K. C. S. Kwok (Centre for Wind, Waves and Water School of Civil Engineering The University of Sydney Sydney New South Wales Australia) Ahsan Kareem (NatHaz Modeling Laboratory University of Notre Dame Notre Dame Indiana USA) |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Computer-Aided Civil and Infrastructure Engineering, Januar 2024, n. 10, v. 39 |
Seite(n): | 1409-1430 |
DOI: | 10.1111/mice.13147 |
- Über diese
Datenseite - Reference-ID
10749647 - Veröffentlicht am:
14.01.2024 - Geändert am:
20.09.2024