Optimizing Artificial Neural Networks For The Evaluation Of Asphalt Pavement Structural Performance
Autor(en): |
Gaetano Bosurgi
Orazio Pellegrino Giuseppe Sollazzo |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | The Baltic Journal of Road and Bridge Engineering, März 2019, n. 1, v. 14 |
Seite(n): | 58-79 |
DOI: | 10.7250/bjrbe.2019-14.433 |
Abstrakt: |
Artificial Neural Networks represent useful tools for several engineering issues. Although they were adopted in several pavement-engineering problems for performance evaluation, their application on pavement structural performance evaluation appears to be remarkable. It is conceivable that defining a proper Artificial Neural Network for estimating structural performance in asphalt pavements from measurements performed through quick and economic surveys produces significant savings for road agencies and improves maintenance planning. However, the architecture of such an Artificial Neural Network must be optimised, to improve the final accuracy and provide a reliable technique for enriching decision-making tools. In this paper, the influence on the final quality of different features conditioning the network architecture has been examined, for maximising the resulting quality and, consequently, the final benefits of the methodology. In particular, input factor quality (structural, traffic, climatic), “homogeneity” of training data records and the actual net topology have been investigated. Finally, these results further prove the approach efficiency, for improving Pavement Management Systems and reducing deflection survey frequency, with remarkable savings for road agencies. |
Copyright: | © 2019 Gaetano Bosurgi, Orazio Pellegrino, Giuseppe Sollazzo |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.71 MB
- Über diese
Datenseite - Reference-ID
10311395 - Veröffentlicht am:
04.04.2019 - Geändert am:
02.06.2021