0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Exploring the Spatially Heterogeneous Effects of Street-Level Perceived Qualities on Listed Real Estate Prices Using Geographically Weighted Regression (GWR) Modeling

Autor(en): ORCID



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 7, v. 14
Seite(n): 1982
DOI: 10.3390/buildings14071982
Abstrakt:

The listed price of real estate is a subjective reflection of its value by sellers, usually related to structural, neighborhood, and environmental attributes. Although previous studies have proposed the hedonic pricing model, factors related to perception are rarely seen in explanatory variables. This study aims to explore the impact of street-level perceived qualities on the listed price per square meter of plot set by the seller of the real estate using the Geographically Weighted Regression (GWR)-based hedonic pricing model and analyzes the spatially heterogeneous effects of the coefficients. In the city of Eindhoven, the Netherlands, Google Street View photos collected at 200 m intervals were employed to calculate representative variables of perceptual quality via a validated convolutional neural network, alongside structural and neighborhood attributes. The final model includes eight explanatory variables, and the results indicate that, apart from the plot area and the number of rooms, the influencing mechanisms of other factors are different. The impact of perceived beautiful quality on listed real estate prices demonstrates obvious distinctions between the north and the south. Perceived livability (positive) and depressing (negative) qualities show similar heterogeneous characteristics. This study offers a comprehensive approach to promote diverse strategies for real estate development across urban areas and recommends a heightened emphasis on the design quality of residential streets.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10795098
  • Veröffentlicht am:
    01.09.2024
  • Geändert am:
    01.09.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine