Exploring the Influence of an Urban Water System on Housing Prices: Case Study of Zhengzhou
Autor(en): |
Junjie Li
Yaduo Hu Chunlu Liu |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 25 Februar 2020, n. 3, v. 10 |
Seite(n): | 44 |
DOI: | 10.3390/buildings10030044 |
Abstrakt: |
A good living environment is the foundation of sustainable housing. Exploring the external influence of environmental factors on housing prices is one of the key issues in the field of real estate research; however, the current study of the urban water landscape on the spillover effect of housing prices is not sufficient. Taking the Zhengzhou residential market as an example, this paper analyzes the effect of an urban water system on residential prices by constructing the traditional Hedonic price model, spatial lag model (SLM) and geographically weighted regression model (GWR) by selecting the main water system and 678 points of residential data in the main urban area. The results show that the accessibility of rivers and lakes and the width and water quality of rivers have a significant effect on residential prices, and the impact of lakes is greater than that of rivers. The spatial heterogeneity of the water system effect is further revealed by adopting spatial lag model and geographically weighted regression model, and the effect of the water system is gradually reduced from the eastern urban area to the western urban area. The results of this study are of great practical significance to the government’s municipal planning, water environment management and housing market management. |
Copyright: | © 2020 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
Geografische Orte
9.43 MB
- Über diese
Datenseite - Reference-ID
10416224 - Veröffentlicht am:
09.03.2020 - Geändert am:
02.06.2021