0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Estimation of Bearing Capacity of Strip Footing Rested on Bilayered Soil Profile Using FEM-AI-Coupled Techniques

Autor(en): ORCID
ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2022
Seite(n): 1-11
DOI: 10.1155/2022/8047559
Abstrakt:

In this research work, finite element method (FEM) and 2D Plaxis were employed to generate numerical values for bilayered soils bearing a strip footing of width B and depths, h and H, in order to predict the ultimate bearing capacity (UBC) of the strip footing underlain by layered soil profile. Several research works have tried to solve bearing capacity problems using limit equilibrium (LE) techniques. But, the LE techniques have limitations in terms of soil properties and profile arrangement. The need, however, for using constitutive models or numerical methods powered by FEM and discrete element method (DEM) has been on the rise due to the versatility and robustness of these techniques to accommodate erratic soil behaviors. Multiple numerical data were generated for the case under study and artificial intelligence (AI)-based techniques; generalized reduced gradient (GRG), genetic programming (GP), artificial neural network (ANN), and evolutionary polynomial regression (EPR) were used to predict the UBC. In order to conduct the parametric analysis to investigate the effect of different soil layers, footing width and overburden pressure at foundation level on the ultimate bearing capacity sets of finite element models were prepared. This was executed using the following soil properties: soil type of top layer (from S1 to S6), soil type of bottom layer (from S1 to S6), strip footing width (B) (from 1.0 to 5.0 m), thickness of the top layer (h) (from 0.5 B to 1.0 B), overburden pressure σ v (from 1.0 m to 3.0 m multiplied by the γ′t), and the parameters combination of each finite model in the set is randomly selected. The results of the FEM/Plaxis parametric study produced the 2D-model, deformed shape, stress distribution, and plastic point (failure point) models. The loading produced appreciable deformation on both x- and y-axes of the soil profile with the y-axis showing a scattered failure configuration. The AI-based prediction produced UBC equations which performed at over 90% accuracy with ANN (99.9%; 6.3%) outperforming other techniques followed by GRG, GP, and EPR.

Copyright: © Ahmed M. Ebid et al. et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10678988
  • Veröffentlicht am:
    18.06.2022
  • Geändert am:
    10.11.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine