0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Detecting railway bridge scour using in-service train signals and machine learning tools

 Detecting railway bridge scour using in-service train signals and machine learning tools
Autor(en): , , , ,
Beitrag für IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024, veröffentlicht in , S. 946-952
DOI: 10.2749/sanjose.2024.0946
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.56 MB

Instrumenting a train crossing over a bridge with a scour problem and acquiring signals presents an alternative approach to traditional scour detection techniques. The study utilizes displacement m...
Weiterlesen

Bibliografische Angaben

Autor(en): (University of Minho, ISISE, ARISE, Department of Civil Engineering, Guimarães, Portugal)
(University of Minho, ISISE, ARISE, Department of Civil Engineering, Guimarães, Portugal)
(University of Minho, ISISE, ARISE, Department of Civil Engineering, Guimarães, Portugal)
(School of Civil Engineering, University College Dublin, Dublin, Ireland)
(Department of Structural Engineering, Norwegian University of Science & Technology NTNU, Trondheim, Norway)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024
Veröffentlicht in:
Seite(n): 946-952 Anzahl der Seiten (im PDF): 7
Seite(n): 946-952
Anzahl der Seiten (im PDF): 7
DOI: 10.2749/sanjose.2024.0946
Abstrakt:

Instrumenting a train crossing over a bridge with a scour problem and acquiring signals presents an alternative approach to traditional scour detection techniques. The study utilizes displacement measurements obtained via a conveniently integrated system on a 6-axle vehicle crossing a railway bridge. Given that the measurements provided correspond to the healthy state of the bridge, scoured state vehicle crossings are synthetically generated with a vehicle-bridge interaction model. The bridge's pier stiffness is determined through a Cross-Entropy optimization algorithm that minimizes the sum of squared differences between measured track irregularities and Finite Element model-calculated displacements combined with rail irregularities. The variation between the healthy and scoured states of the bridge is utilized as a damage indicator. The case study is extended to the network level through Machine Learning (ML) algorithms.