Design of ultra-thin composite deployable shell structures through machine learning
Autor(en): |
Miguel Bessa
Sergio Pellegrino |
---|---|
Medium: | Tagungsbeitrag |
Sprache(n): | Englisch |
Tagung: | Interfaces: Architecture, Engineering, Science, Annual Meeting of the International Association of Shell & Spatial Structures (IASS), Hamburg, 25-27 September 2017 |
Veröffentlicht in: | Interfaces: Architecture . Engineering . Science |
Jahr: | 2017 |
Abstrakt: | A data-driven computational framework is applied for the design of optimal ultra-thin deployable structures with improved buckling behavior. High-fidelity computational analyses and machine learning are used to construct design charts that are shown to guide the structural design. |