0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Bin, Feng / Hosseini, Shahab / Chen, Jie / Samui, Pijush / Fattahi, Hadi / Armaghani, Danial Jahed (2024): Proposing Optimized Random Forest Models for Predicting Compressive Strength of Geopolymer Composites. In: Infrastructures, v. 9, n. 10 (8 Oktober 2024).

    https://doi.org/10.3390/infrastructures9100181

  2. Qiong, Tang / Jha, Ishan / Bahrami, Alireza / Isleem, Haytham F. / Kumar, Rakesh / Samui, Pijush (2024): Proposed numerical and machine learning models for fiber-reinforced polymer concrete-steel hollow and solid elliptical columns. In: Frontiers of Structural and Civil Engineering, v. 18, n. 8 (Juli 2024).

    https://doi.org/10.1007/s11709-024-1083-1

  3. Kumar, Pramod / Samui, Pijush / Armaghani, Danial Jahed / Roy, Sanjiban Sekhar (2024): Second-order reliability analysis of an energy pile with CPT data. In: Journal of Building Engineering, v. 95 (Oktober 2024).

    https://doi.org/10.1016/j.jobe.2024.110165

  4. Kumar, Abhishek / Rai, Baboo / Samui, Pijush (2024): Soft computing-based reliability analysis of simply supported beam: a comparative study of hybrid ANN models. In: Asian Journal of Civil Engineering, v. 25, n. 4 (Februar 2024).

    https://doi.org/10.1007/s42107-023-00969-8

  5. Sufyan, Md Saeb / Samui, Pijush / Mishra, Shambhu Sharan (2023): Reliability analysis of portal frame subjected to varied lateral loads using machine learning. In: Asian Journal of Civil Engineering, v. 25, n. 2 (Oktober 2023).

    https://doi.org/10.1007/s42107-023-00893-x

  6. Kumar, Manish / Biswas, Rahul / Kumar, Divesh Ranjan / Samui, Pijush / Kaloop, Mosbeh R. / Eldessouki, Mohamed (2023): Soft computing-based prediction models for compressive strength of concrete. In: Case Studies in Construction Materials, v. 19 (Dezember 2023).

    https://doi.org/10.1016/j.cscm.2023.e02321

  7. Sufyan, Md Saeb / Samui, Pijush / Mishra, Shambhu Sharan (2023): Reliability analysis of frame structures under top-floor lateral load using artificial intelligence. In: Asian Journal of Civil Engineering, v. 24, n. 8 (Juni 2023).

    https://doi.org/10.1007/s42107-023-00741-y

  8. Kumar, Divesh Ranjan / Samui, Pijush / Wipulanusat, Warit / Keawsawasvong, Suraparb / Sangjinda, Kongtawan / Jitchaijaroen, Wittaya (2023): Soft-Computing Techniques for Predicting Seismic Bearing Capacity of Strip Footings in Slopes. In: Buildings, v. 13, n. 6 (23 Mai 2023).

    https://doi.org/10.3390/buildings13061371

  9. Mustafa, Rashid / Samui, Pijush / Kumari, Sunita (2022): Reliability Analysis of Gravity Retaining Wall Using Hybrid ANFIS. In: Infrastructures, v. 7, n. 9 (September 2022).

    https://doi.org/10.3390/infrastructures7090121

  10. Pradeep, T. / Bardhan, Abidhan / Burman, Avijit / Samui, Pijush (2021): Rock Strain Prediction Using Deep Neural Network and Hybrid Models of ANFIS and Meta-Heuristic Optimization Algorithms. In: Infrastructures, v. 6, n. 9 (September 2021).

    https://doi.org/10.3390/infrastructures6090129

  11. Ray, Rahul / Choudhary, Shiva Shankar / Roy, Lal Bahadur / Kaloop, Mosbeh R. / Samui, Pijush / Kurup, Pradeep U. / Ahn, Jungkyu / Hu, Jong Wan (2023): Reliability analysis of reinforced soil slope stability using GA-ANFIS, RFC, and GMDH soft computing techniques. In: Case Studies in Construction Materials, v. 18 (Juli 2023).

    https://doi.org/10.1016/j.cscm.2023.e01898

  12. Kaloop, Mosbeh R. / Samui, Pijush / Kim, Jae-Joung / Hu, Jong Wan / Ramzy, Ahmed (2022): Stress intensity factor prediction on offshore pipelines using surrogate modeling techniques. In: Case Studies in Construction Materials, v. 16 (Juni 2022).

    https://doi.org/10.1016/j.cscm.2022.e01045

  13. Kaloop, Mosbeh R. / Samui, Pijush / Iqbal, Mudassir / Hu, Jong Wan (2022): Soft computing approaches towards tensile strength estimation of GFRP rebars subjected to alkaline-concrete environment. In: Case Studies in Construction Materials, v. 16 (Juni 2022).

    https://doi.org/10.1016/j.cscm.2022.e00955

  14. Asteris, Panagiotis G. / Skentou, Athanasia D. / Bardhan, Abidhan / Samui, Pijush / Lourenço, Paulo B. (2021): Soft computing techniques for the prediction of concrete compressive strength using Non-Destructive tests. In: Construction and Building Materials, v. 303 (Oktober 2021).

    https://doi.org/10.1016/j.conbuildmat.2021.124450

  15. Samui, Pijush / Sitharam, T. G. (2010): Site Characterization Model Using Artificial Neural Network and Kriging. In: International Journal of Geomechanics, v. 10, n. 5 (Oktober 2010).

    https://doi.org/10.1061/(asce)1532-3641(2010)10:5(171)

  16. Samui, Pijush / Kurup, Pradeep (2013): Use of the Relevance Vector Machine for Prediction of an Overconsolidation Ratio. In: International Journal of Geomechanics, v. 13, n. 1 (Februar 2013).

    https://doi.org/10.1061/(asce)gm.1943-5622.0000172

  17. Samui, Pijush / Kim, Dookie (2012): Utilization of support vector machine for prediction of fracture parameters of concrete. In: Computers and Concrete, v. 9, n. 3 (März 2012).

    https://doi.org/10.12989/cac.2012.9.3.215

  18. Samui, Pijush (2007): Seismic liquefaction potential assessment by using Relevance Vector Machine. In: Earthquake Engineering and Engineering Vibration, v. 6, n. 4 (Dezember 2007).

    https://doi.org/10.1007/s11803-007-0766-7

  19. Samui, Pijush / Kim, Dookie / Kakoti, Namrata (2018): Soft Computing Applied to Rotation Capacity of Wide Flange Beams. In: Iranian Journal of Science and Technology, Transactions of Civil Engineering, v. 42, n. 3 ( 2018).

    https://doi.org/10.1007/s40996-017-0081-0

  20. Karthikeyan, J. / Kim, Dookie / Aiyer, Bhairevi G. / Samui, Pijush (2013): SPT-based liquefaction potential assessment by relevance vector machine approach. In: European Journal of Environmental and Civil Engineering, v. 17, n. 4 (April 2013).

    https://doi.org/10.1080/19648189.2013.781546

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine