Soft-Computing Techniques for Predicting Seismic Bearing Capacity of Strip Footings in Slopes
Autor(en): |
Divesh Ranjan Kumar
Pijush Samui Warit Wipulanusat Suraparb Keawsawasvong Kongtawan Sangjinda Wittaya Jitchaijaroen |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 23 Mai 2023, n. 6, v. 13 |
Seite(n): | 1371 |
DOI: | 10.3390/buildings13061371 |
Abstrakt: |
In this study, various machine learning algorithms, including the minimax probability machine regression (MPMR), functional network (FN), convolutional neural network (CNN), recurrent neural network (RNN), and group method of data handling (GMDH) models, are proposed for the estimation of the seismic bearing capacity factor (Nc) of strip footings on sloping ground under seismic events. To train and test the proposed machine learning model, a total of 1296 samples were numerically obtained by performing a lower-bound (LB) and upper-bound (UB) finite element limit analysis (FELA) to evaluate the seismic bearing capacity factor (Nc) of strip footings. Sensitivity analysis was performed on all dimensionless input parameters (i.e., slope inclination (β); normalized depth (D/B); normalized distance (L/B); normalized slope height (H/B); the strength ratio (cu/γB); and the horizontal seismic acceleration (kh)) to determine the influence on the dimensionless output parameters (i.e., the seismic bearing capacity factor (Nc)). To assess the performance of the proposed models, various performance parameters—namely the coefficient of determination (R2), variance account factor (VAF), performance index (PI), Willmott’s index of agreement (WI), the mean absolute error (MAE), the weighted mean absolute percentage error (WMAPE), the mean bias error (MBE), and the root-mean-square error (RMSE)—were calculated. The predictive performance of all proposed models for a bearing capacity factor (Nc) prediction was compared by using the testing dataset, and it was found that the MPMR model achieved the highest R2 values of 1.000 and 0.957 and the lowest RMSE values of 0.000 and 0.038 in both the training and testing phases, respectively. The parametric analyses, rank analyses, REC curves, and the AIC showed that the proposed models were quite effective and reliable for the estimation of the bearing capacity factor (Nc). |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
5.63 MB
- Über diese
Datenseite - Reference-ID
10728374 - Veröffentlicht am:
30.05.2023 - Geändert am:
01.06.2023