0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Structural Damage Identification considering Uncertainties in Nonuniform Measurement Conditions Based on Convolution Neural Networks

Autor(en): ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Control and Health Monitoring, , v. 2023
Seite(n): 1-25
DOI: 10.1155/2023/8325686
Abstrakt:

Dynamic-vibration-based structural damage identification (SDI) represents the main target for structural health monitoring (SHM). It is significant to consider the unavoidable uncertainties arising from both the structure and measuring noise. On the other hand, nonuniform measurement conditions often appear in actual SHM applications, which consist of two parts, i.e., spatial nonuniform characteristics for noises are induced by various intensities of input noise in every single sampling channel and multisensor stays in a damaged state. This paper proposes a new method for the SDI considering uncertainties in nonuniform measurement conditions integrating convolutional neural network (CNN). Herein, the great ability of feature extraction from the measurement associated with the convolutional network is used to handle the input data, and the mapping connection between the selected features and damage states is established. Time histories of structural responses, such as acceleration, are applied for damage identification. The application and accuracy of the CNN, which is trained with input uncertain parameters contaminated by stochastic noises, are verified by the finite element numerical and experimental results. Both uncertain parameters and measurement conditions are considered in the verification. The responses obtained from the numerical and experimental approach show that the proposed neural network model can identify the structural damage with high accuracy. The great robustness of the proposed method is examined by studying the influence of uncertainties, even considering the nonuniform measurement condition.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2023/8325686.
  • Über diese
    Datenseite
  • Reference-ID
    10734860
  • Veröffentlicht am:
    03.09.2023
  • Geändert am:
    03.09.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine