0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Quantitatively linking long-term monitoring data to condition ratings through a reliability-based framework

Autor(en):


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Health Monitoring, , n. 5, v. 20
Seite(n): 147592172094996
DOI: 10.1177/1475921720949965
Abstrakt:

The holy grail of structural health monitoring is the quantitative linkage between data and decisions. While structural health monitoring has shown continued growth over the past several decades, there is a persistent chasm between structural health monitoring and the ability of structure owners to make asset management decisions based on structural health monitoring data. This is in part due to the historical structural health monitoring paradigm cast as a problem of estimating structural state and detecting damage by monitoring changes in structural properties (namely, reduced stiffness). For most operational structures, deterioration does not necessarily correspond to changes in structural properties with structures operating in their elastic regimes even when deteriorated. For structures like bridges, upkeep decisions are based on federally mandated condition ratings assigned during visual inspection. Since condition ratings are widely accepted in practice, the authors propose that condition ratings serve as lower limit states (i.e. limit states below yielding) with long-term monitoring data used to quantify these lower limit states in terms of the reliability index. This article presents a method to quantify the reliability index values corresponding to the lower limit states described by existing condition ratings. Once the reliability index thresholds are established, the data-driven reliability index of the in-service asset can be monitored continuously and explicitly mapped to a condition rating at any time. As an illustrative example, the proposed framework for tracking structural performance is implemented with long-term monitoring data collected on a pin-and-hanger assembly on the Telegraph Road Bridge, which is a highway bridge located in Monroe, MI. The successful implementation of the proposed method on the Telegraph Road Bridge results in a human-independent and truly data-driven decision-making strategy that is synergistic with the state of practice, eliminates risks associated with infrequent visual inspections, and expands condition ratings to encompass the entire measurable domain of damage that may exist in an asset.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/1475921720949965.
  • Über diese
    Datenseite
  • Reference-ID
    10562508
  • Veröffentlicht am:
    11.02.2021
  • Geändert am:
    10.12.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine