A Probabilistic Assessment Model for Train-Bridge Systems: Special Attention on Track Irregularities
Autor(en): |
Dejun Liu
Lifeng Xin Xiaozhen Li Jiaxin Zhang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Shock and Vibration, Januar 2021, v. 2021 |
Seite(n): | 1-14 |
DOI: | 10.1155/2021/4066820 |
Abstrakt: |
In this paper, a probabilistic model devoted to investigating the dynamic behaviors of train-bridge systems subjected to random track irregularities is presented, in which a train-ballasted track-bridge coupled model with nonlinear wheel-rail contacts is introduced, and then a new approach for simulating a random field of track irregularities is developed; moreover, the probability density evolution method is used to describe the probability transmission from excitation inputs to response outputs; finally, extended analysis from three aspects, that is, stochastic analysis, reliability analysis, and correlation analysis, are conducted on the evaluation and application of the proposed model. Besides, compared to the Monte Carlo method, the high efficiency and the accuracy of this proposed model are validated. Numerical studies show that the ergodic properties of track irregularities on spectra, amplitudes, wavelengths, and phases should be taken into account in stochastic analysis of train-bridge interactions. Since the main contributive factors concerning different dynamic indices are rather different, different failure modes possess no obvious or only weak correlations from the probabilistic perspective, and the first-order reliability theory is suitable in achieving the system reliability. |
Copyright: | © 2021 Dejun Liu, Lifeng Xin, Xiaozhen Li, Jiaxin Zhang |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
2.84 MB
- Über diese
Datenseite - Reference-ID
10676169 - Veröffentlicht am:
28.05.2022 - Geändert am:
01.06.2022