0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

A Multitask Deep Learning Model for Parsing Bridge Elements and Segmenting Defect in Bridge Inspection Images

Autor(en):
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Transportation Research Record: Journal of the Transportation Research Board, , n. 7, v. 2677
Seite(n): 693-704
DOI: 10.1177/03611981231155418
Abstrakt:

The vast network of bridges in the United States has a high requirement for maintenance and rehabilitation. The massive cost of manual visual inspection to assess bridge conditions is a burden to some extent. Advanced robots have been used to automate inspection data collection. Automating the segmentations of multiclass elements and surface defects on the elements in the large volume of inspection image data would facilitate an efficient and effective assessment of bridge conditions. Training separate single-task networks for element parsing (i.e., semantic segmentation of multiclass elements) and defect segmentation fails to incorporate the close connection between these two tasks. Both recognizable structural elements and apparent surface defects are present in the inspection images. This paper is motivated to develop a multitask deep learning model that fully uses such interdependence between bridge elements and defects to boost the model’s task performance and generalization. Furthermore, the study investigated the effectiveness of the proposed model designs for improving task performance, including feature decomposition, cross-talk sharing, and multi-objective loss function. A data set with pixel-level labels of bridge elements and corrosion was developed for model training and testing. Quantitative and qualitative results from evaluating the developed multitask deep model demonstrate its advantages over the single-task-based model not only in performance (2.59% higher mIoU on bridge parsing and 1.65% on corrosion segmentation) but also in computational time and implementation capability.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/03611981231155418.
  • Über diese
    Datenseite
  • Reference-ID
    10777857
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine