0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Long-Term Behavior of a Geosynthetic Reinforced Soil Integrated Bridge System in Hawaii

Autor(en):


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Transportation Research Record: Journal of the Transportation Research Board, , n. 2, v. 2673
Seite(n): 571-582
DOI: 10.1177/0361198119827913
Abstrakt:

A 109.5-Ft-long Geosynthetic Reinforced Soil Integrated Bridge System (GRS-IBS) in Hawaii was instrumented to measure superstructure strains, vertical pressures below the footing, lateral pressures behind the end wall and modular block facing, and lateral displacements of the facing. Field surveys were also performed to measure the bridge footing settlement. The field data showed that: (1) with time the superstructure compressive concrete strains gradually increased and the end wall lateral pressures gradually decreased, evidence of superstructure concrete creep and shrinkage; (2) three years after construction, the total footing settlement was ≈ 1.2 in.; and (3) the bridge superstructure undergoes daily and seasonal thermal expansion and contraction cycles. Also seasonally, the vertical pressures beneath the footing, lateral pressures behind the end walls, and superstructure strains fluctuate cyclically. The vertical footing pressure closest to the stream experienced the greatest daily pressure fluctuation (≈ 2500−3000 psf), while the one nearest the end wall experienced the least. Based on the results of cyclic triaxial tests on a basalt aggregate similar to the GRS backfill to estimate permanent deformation of the abutment due to daily pressure fluctuations, it was estimated that the permanent strain ≈ 1%, comparable to what was observed in the bridge footing. After three years, the total settlement is about 1.6% of the GRS abutment height; ≈ 0.7% of this is due to the structure dead weight and the remaining 0.9% is due to cyclic loading, consistent with the 1% cyclic strain from laboratory permanent deformation tests.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/0361198119827913.
  • Über diese
    Datenseite
  • Reference-ID
    10777956
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine