The Impact of Building Morphology on Energy Use Intensity of High-Rise Residential Clusters: A Case Study of Hangzhou, China
Autor(en): |
Weijia Feng
Jintao Chen Yi Yang Weijun Gao Qinfeng Zhao Haowei Xing Shuai Yu |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 2 Juli 2024, n. 7, v. 14 |
Seite(n): | 2245 |
DOI: | 10.3390/buildings14072245 |
Abstrakt: |
Building operations account for a large amount of energy use and CO₂ emissions, and the morphology of buildings in residential clusters strongly impacts energy efficiency performance. However, little research has focused on the morphology and energy electricity usage of high-rise residential clusters in hot summer and cold winter (HSCW) regions. We investigated 96 residential clusters in Hangzhou, China, and established a corresponding morphology database. Additionally, we obtained annual electricity consumption for 16 of these residential clusters. With this database, we performed optimization of morphological parameters upon energy use intensity (EUI) using a genetic algorithm (GA). Specifically, the cooling, heating, and lighting EUIs of high-rise residential clusters were studied. After implementing the optimized morphological parameters, there was a reduction of up to 7.73% in EUI. According to regression analysis, the average aspect ratio was the most significant factor influencing EUI (r = −0.907), followed by floor area ratio (r = −0.755), average orientation (r = 0.502), and average number of floors (r = −0.453). These results indicate that a higher intensity of land development with a greater floor area ratio, average aspect ratio, and average number of floors can reduce total energy consumption. Additionally, we found that an average building orientation of southwest 15° (with respect to south) is optimal. The findings of this study can assist urban planners and designers in developing more sustainable residential clusters, leading to decreased energy costs and CO₂ emissions. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
4.94 MB
- Über diese
Datenseite - Reference-ID
10795590 - Veröffentlicht am:
01.09.2024 - Geändert am:
25.01.2025