Hybrid Model for Forecasting Indoor CO2 Concentration
Autor(en): |
Ki Uhn Ahn
Deuk-Woo Kim Kyungjoo Cho Dongwoo Cho Hyun Mi Cho Chang-U Chae |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 20 September 2022, n. 10, v. 12 |
Seite(n): | 1540 |
DOI: | 10.3390/buildings12101540 |
Abstrakt: |
Indoor CO2 concentration is considered a metric of indoor air quality that affects the health of occupants. In this study, a hybrid model was developed for forecasting the varying indoor CO2 concentration levels in a residential apartment unit in the presence of occupants by controlling the ventilation rates of a heat recovery ventilator. In this model, the mass balance equation for a single zone as a white-box model was combined with a Bayesian neural network (BNN) as a black box model. During the learning process of the hybrid model, the BNN estimated an aggregated unknown ventilation rate and transferred the estimation to the mass-balance equation. A parametric study was conducted by changing the prediction horizons of the hybrid model from 5 to 15 min, and the forecasting performance of the hybrid model was compared with the stand-alone mass balance equation. The hybrid model showed better forecasting performance than that of the mass balance equation on the experimental dataset for a living room and bedroom. The average MBE and CVRMSE of the hybrid model for the prediction horizon of 15 min were 0.65% and 5.23%, respectively, whereas those of the mass balance equation were 0.99% and 9.30%, respectively. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
7.75 MB
- Über diese
Datenseite - Reference-ID
10700040 - Veröffentlicht am:
11.12.2022 - Geändert am:
10.05.2023