Data-Driven Compressive Strength Prediction of Fly Ash Concrete Using Ensemble Learner Algorithms
Autor(en): |
Mohammad Sadegh Barkhordari
Danial Jahed Armaghani Ahmed Salih Mohammed Dmitrii Vladimirovich Ulrikh |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 18 Januar 2022, n. 2, v. 12 |
Seite(n): | 132 |
DOI: | 10.3390/buildings12020132 |
Abstrakt: |
Concrete is one of the most popular materials for building all types of structures, and it has a wide range of applications in the construction industry. Cement production and use have a significant environmental impact due to the emission of different gases. The use of fly ash concrete (FAC) is crucial in eliminating this defect. However, varied features of cementitious composites exist, and understanding their mechanical characteristics is critical for safety. On the other hand, for forecasting the mechanical characteristics of concrete, machine learning approaches are extensively employed algorithms. The goal of this work is to compare ensemble deep neural network models, i.e., the super learner algorithm, simple averaging, weighted averaging, integrated stacking, as well as separate stacking ensemble models, and super learner models, in order to develop an accurate approach for estimating the compressive strength of FAC and reducing the high variance of the predictive models. Separate stacking with the random forest meta-learner received the most accurate predictions (97.6%) with the highest coefficient of determination and the lowest mean square error and variance. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
6.57 MB
- Über diese
Datenseite - Reference-ID
10657640 - Veröffentlicht am:
17.02.2022 - Geändert am:
01.06.2022