0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Comparison of Random Survival Forest with Accelerated Failure Time-Weibull Model for Bridge Deck Deterioration

Autor(en): ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Transportation Research Record: Journal of the Transportation Research Board, , n. 7, v. 2676
Seite(n): 296-311
DOI: 10.1177/03611981221078281
Abstrakt:

Bridge deck deterioration modeling is critical to infrastructure management. Deterioration modeling is traditionally done using deterministic models, stochastic models, and recently basic machine learning methods. The advanced machine learning-based survival models, such as random survival forest, have not been adapted for use in infrastructure management. This paper introduces random survival forest models for bridge deck deterioration modeling and compare their performance with a commonly used traditional stochastic model, that is, the Weibull distribution-based accelerated failure time (AFT-Weibull) model. To better adapt the random survival model for bridge deck deterioration modeling, the selection of the dependent variables is discussed between two variables: time-in-rating, and cumulative truck traffic. Inspection data from about 22,000 state-owned bridge decks in Pennsylvania are used to validate and test the performance of the models. The results suggest that cumulative truck traffic is more suitable to be selected as the dependent variable when analyzing the reliability of the bridge deck. Further, the random survival forest model outperformed the AFT-Weibull model in predictive accuracy.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/03611981221078281.
  • Über diese
    Datenseite
  • Reference-ID
    10777886
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine