Artificial Intelligence in Net-Zero Carbon Emissions for Sustainable Building Projects: A Systematic Literature and Science Mapping Review
Autor(en): |
Yanxue Li
Maxwell Fordjour Antwi-Afari Shahnawaz Anwer Imran Mehmood Waleed Umer Saeed Reza Mohandes Ibrahim Yahaya Wuni Mohammed Abdul-Rahman Heng Li |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 25 August 2024, n. 9, v. 14 |
Seite(n): | 2752 |
DOI: | 10.3390/buildings14092752 |
Abstrakt: |
Artificial intelligence (AI) has emerged as an effective solution to alleviate excessive carbon emissions in sustainable building projects. Although there are numerous applications of AI, there is no state-of-the-art review of how AI applications can reduce net-zero carbon emissions (NZCEs) for sustainable building projects. Therefore, this review study aims to conduct a systematic literature and science mapping review of AI applications in NZCEs for sustainable building projects, thereby expediting the realization of NZCEs in building projects. A mixed-method approach (i.e., systematic literature review and science mapping) consisting of four comprehensive stages was used to retrieve relevant published articles from the Scopus database. A total of 154 published articles were retrieved and used to conduct science mapping analyses and qualitative discussions, including mainstream research topics, gaps, and future research directions. Six mainstream research topics were identified and discussed. These include (1) life cycle assessment and carbon footprint, (2) practical applications of AI technology, (3) multi-objective optimization, (4) energy management and energy efficiency, (5) carbon emissions from buildings, and (6) decision support systems and sustainability. In addition, this review suggests six research gaps and develops a framework depicting future research directions. The findings contribute to advancing AI applications in reducing carbon emissions in sustainable building projects and can help researchers and practitioners to realize its economic and environmental benefits. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
2.12 MB
- Über diese
Datenseite - Reference-ID
10799907 - Veröffentlicht am:
23.09.2024 - Geändert am:
23.09.2024