0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Structural Health Monitoring of RC structures using optic fiber strain measurements: a deep learning approach

 Structural Health Monitoring of RC structures using optic fiber strain measurements: a deep learning approach
Autor(en): , ORCID, ORCID, ,
Beitrag für IABSE Congress: The Evolving Metropolis, New York, NY, USA, 4-6 September 2019, veröffentlicht in , S. 397-402
DOI: 10.2749/newyork.2019.0397
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.13 MB

This paper reports the early findings of an ongoing project aimed at developing new methods to upgrade the current maintenance strategies of the civil and transport infrastructure. As part of these...
Weiterlesen

Bibliografische Angaben

Autor(en): (Chalmers University of Technology)
ORCID (Chalmers University of Technology)
ORCID (Chalmers University of Technology)
(University of Gothenburg)
(Swedish Transport Administration)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: The Evolving Metropolis, New York, NY, USA, 4-6 September 2019
Veröffentlicht in:
Seite(n): 397-402 Anzahl der Seiten (im PDF): 6
Seite(n): 397-402
Anzahl der Seiten (im PDF): 6
DOI: 10.2749/newyork.2019.0397
Abstrakt:

This paper reports the early findings of an ongoing project aimed at developing new methods to upgrade the current maintenance strategies of the civil and transport infrastructure. As part of these new methods, the use of Machine Learning (ML) algorithms is being investigated to constitute the core of a new generation of more accurate and robust structural health monitoring (SHM) systems for concrete structures. Unlike most of the existing SHM systems, relying on the analysis of the natural frequencies of the structure based on data obtained from accelerometers, the present study uses a distributed optic fiber system to monitor the strain distribution along steel reinforcing bars. The preliminary results of the study indicate that a semi-supervised Deep Autoencoder algorithm (DAE) can successfully quantify the damage attributable to transverse cracks in a reinforced concrete beam subjected to three-point loading. Future applications will feature the determination of crack locations, early detection of reinforcement corrosion as well as other types of damage such as splitting cracks or surface spalling.

Stichwörter:
Betonbauwerke (Massivbauwerke)