0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Structural Health Diagnosis Under Limited Supervision

 Structural Health Diagnosis Under Limited Supervision
Autor(en): ,
Beitrag für IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, veröffentlicht in , S. 1231-1239
DOI: 10.2749/nanjing.2022.1231
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.15 MB

Structural health diagnosis has been investigated following a data-driven machine learning paradigm. However, the model accuracy and generalization capability highly rely on the quality and diversi...
Weiterlesen

Bibliografische Angaben

Autor(en): (Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin, China; Key Lab of Structures Dynamics Behavior and Control of the Ministry of Education, Harbin, China; Harbin Instit)
(Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin, China; Key Lab of Structures Dynamics Behavior and Control of the Ministry of Education, Harbin, China; Harbin Instit)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Veröffentlicht in:
Seite(n): 1231-1239 Anzahl der Seiten (im PDF): 9
Seite(n): 1231-1239
Anzahl der Seiten (im PDF): 9
DOI: 10.2749/nanjing.2022.1231
Abstrakt:

Structural health diagnosis has been investigated following a data-driven machine learning paradigm. However, the model accuracy and generalization capability highly rely on the quality and diversity of datasets. This study established a framework for structural health diagnosis under limited supervision. Firstly, an image augmentation algorithm of random elastic deformation, a novel neural network with self-attention and subnet modules, and a task-aware few-shot meta learning method were proposed for vision-based damage recognition. Secondly, deep learning networks were established to model intra- and inter-class temporal and probabilistic correlations of different quasi-static responses for condition assessment. Finally, a two-stage convergence criterion merging with the subset simulation and Kriging surrogate model was designed for reliability evaluation. Real-world applications on large-scale infrastructure demonstrated the effectiveness.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
Lizenz:

Die Urheberrechte (Copyright) für dieses Werk sind rechtlich geschützt. Es darf nicht ohne die Zustimmung des Autors/der Autorin oder Rechteinhabers/-in weiter benutzt werden.