0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Response Reconstruction Based on a Multi-End Convolutional Neural Network

 Response Reconstruction Based on a Multi-End Convolutional Neural Network
Autor(en): , , ORCID
Beitrag für IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, veröffentlicht in , S. 1320-1328
DOI: 10.2749/nanjing.2022.1320
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.15 MB

Structural health monitoring (SHM) techniques evaluate the state of the structures and detect damages based on the analyses of the monitored responses. As the measurement of all target responses ca...
Weiterlesen

Bibliografische Angaben

Autor(en): (Department of Bridge Engineering, Tongji University, Shanghai 200092, China)
(Department of Bridge Engineering, Tongji University, Shanghai 200092, China)
ORCID (Department of Bridge Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China; Shanghai Qizhi Institute, Shanghai, 200232, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Veröffentlicht in:
Seite(n): 1320-1328 Anzahl der Seiten (im PDF): 9
Seite(n): 1320-1328
Anzahl der Seiten (im PDF): 9
DOI: 10.2749/nanjing.2022.1320
Abstrakt:

Structural health monitoring (SHM) techniques evaluate the state of the structures and detect damages based on the analyses of the monitored responses. As the measurement of all target responses can be difficult due to various limitations, reconstructing the target responses using measured data is necessary. To reconstruct the response data in the field of structural health monitoring, this paper proposes a multi-end deep convolutional network with an encoder-decoder structure and skip connections. The responses are computed by the finite element model and then divided into the training set. The proposed network model is trained to map the relationships among the various responses of involved positions. Varied measured data can be fused to reconstruct different desired responses at multi-position, leveraging a single network. Two numerical simulations are conducted to demonstrate the proposed method's applicability.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
Lizenz:

Die Urheberrechte (Copyright) für dieses Werk sind rechtlich geschützt. Es darf nicht ohne die Zustimmung des Autors/der Autorin oder Rechteinhabers/-in weiter benutzt werden.