0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Research on the dynamic properties of piled structures using the neural networks and the support vector machines

 Research on the dynamic properties of piled structures using the neural networks and the support vector machines
Autor(en): , ,
Beitrag für IABSE Symposium: Engineering the Future, Vancouver, Canada, 21-23 September 2017, veröffentlicht in , S. 2149-2154
DOI: 10.2749/vancouver.2017.2149
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.19 MB

A simplified method is proposed to analyse the dynamic properties of piled structures. Superstructures are modelled as generalized single degree of freedom systems using the virtual displacement pr...
Weiterlesen

Bibliografische Angaben

Autor(en): (Department of Civil Engineering, Tongji University, Shanghai, China)
(Institute of Building Structures, China Academy of Building Research, Beijing, China)
(Department of Civil Engineering, Tongji University, Shanghai, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Symposium: Engineering the Future, Vancouver, Canada, 21-23 September 2017
Veröffentlicht in:
Seite(n): 2149-2154 Anzahl der Seiten (im PDF): 6
Seite(n): 2149-2154
Anzahl der Seiten (im PDF): 6
Jahr: 2017
DOI: 10.2749/vancouver.2017.2149
Abstrakt:

A simplified method is proposed to analyse the dynamic properties of piled structures. Superstructures are modelled as generalized single degree of freedom systems using the virtual displacement principle, and the impedance functions of pile groups are solved based on the thin- layer method. Six dimensionless parameters are selected to characterize the soil-pile-structure systems and extensive parametric analyses are performed. A mathematical model for the seismic analysis of soil-pile-structure system is built in the neural network based on the outcomes of parametric analyses. The data of the analyses are divided into three different parts which are used for training, testing and validating of the artificial neural network(ANN) model. In order to validate the accuracy of ANN model, another analysis technique of the support vector machine is used. The outcomes show that the model can predict the dynamic properties of the soil-pile-structure system with good accuracy and less time which contribute to solve the dynamic characteristics of piled structures without performing complex analysis.