0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Real-time seismic damage prediction and comparison of various ground motion intensity measures based on machine learning

 Real-time seismic damage prediction and comparison of various ground motion intensity measures based on machine learning
Autor(en): , , ,
Beitrag für IABSE Congress: Resilient technologies for sustainable infrastructure, Christchurch, New Zealand, 3-5 February 2021, veröffentlicht in , S. 1158-1166
DOI: 10.2749/christchurch.2021.1158
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.26 MB

After earthquakes, an accurate and efficient seismic damage prediction is indispensable for emergency response. Existing methods face the dilemma between accuracy and efficiency. A real-time and ac...
Weiterlesen

Bibliografische Angaben

Autor(en): (Department of Civil Engineering, Tsinghua University, Beijing, China)
(Department of Civil Engineering, Tsinghua University, Beijing, China)
(Department of Civil Engineering, Tsinghua University, Beijing, China)
(Department of Civil Engineering, Tsinghua University, Beijing, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Resilient technologies for sustainable infrastructure, Christchurch, New Zealand, 3-5 February 2021
Veröffentlicht in:
Seite(n): 1158-1166 Anzahl der Seiten (im PDF): 9
Seite(n): 1158-1166
Anzahl der Seiten (im PDF): 9
DOI: 10.2749/christchurch.2021.1158
Abstrakt:

After earthquakes, an accurate and efficient seismic damage prediction is indispensable for emergency response. Existing methods face the dilemma between accuracy and efficiency. A real-time and accurate seismic damage prediction method based on machine-learning is proposed here. 48 intensity measures are used as input to represent the ground motion comprehensively. Besides, the workload of the NLTHA method is replaced by model training/testing and moved to a non-urgent stage to promote efficiency. Case studies with various building cases prove the accuracy and efficiency of the proposed method. Key intensity measures for each building are identified by iteratively using the proposed framework.