0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Probabilistic Performance Assessment of Highway Bridges Using Operational Monitoring Data

 Probabilistic Performance Assessment of Highway Bridges Using Operational Monitoring Data
Autor(en): , ,
Beitrag für IABSE Symposium: Engineering for Progress, Nature and People, Madrid, Spain, 3-5 September 2014, veröffentlicht in , S. 2650-2657
DOI: 10.2749/222137814814070163
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.14 MB

A new probabilistic performance assessment procedure using operational monitoring data is proposed. In the procedure, multiple finite element models are identified from the weighted aggregation fo...
Weiterlesen

Bibliografische Angaben

Autor(en):


Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Symposium: Engineering for Progress, Nature and People, Madrid, Spain, 3-5 September 2014
Veröffentlicht in:
Seite(n): 2650-2657 Anzahl der Seiten (im PDF): 8
Seite(n): 2650-2657
Anzahl der Seiten (im PDF): 8
Jahr: 2014
DOI: 10.2749/222137814814070163
Abstrakt:

A new probabilistic performance assessment procedure using operational monitoring data is proposed. In the procedure, multiple finite element models are identified from the weighted aggregation formulation for multi-objective optimization problem, each of which can represent uncertainty condition of operational monitoring data. By applying principal component analysis andK-means clustering on numerous candidate models, they are grouped according to their similarity and contributions in performance assessment. And then bridge’s performance can be assessed in probabilistic approach using the FE models in the classified groups, at which specific types of operational monitoring data uncertainty is represented. Yeondae Bridge, a steel-box girder highway bridge in Korea, is taken as an illustrative example. Load rating factor is evaluated as performance index of the bridge, and compared to rating factors by sophisticated model and baseline mode to verify effectiveness of proposed method.