0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Prediction of Aerodynamic Coefficients using Artificial Neural Network in Shape Optimization of Centrally-Slotted Box Deck Bridge

 Prediction of Aerodynamic Coefficients using Artificial Neural Network in Shape Optimization of Centrally-Slotted Box Deck Bridge
Autor(en): , , ,
Beitrag für IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, veröffentlicht in , S. 444-451
DOI: 10.2749/nanjing.2022.0444
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.19 MB

Aerodynamic shape optimization of bridge deck is a very important task in the wind-resistant design of long-span bridges and often carried out via wind tunnel tests of sectional model or CFD simula...
Weiterlesen

Bibliografische Angaben

Autor(en): (Department of Bridge Engineering / State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China)
(Department of Bridge Engineering / State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China)
(Department of Bridge Engineering / State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China)
(Department of Structural Engineering, Tongji University, Shanghai, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Veröffentlicht in:
Seite(n): 444-451 Anzahl der Seiten (im PDF): 8
Seite(n): 444-451
Anzahl der Seiten (im PDF): 8
DOI: 10.2749/nanjing.2022.0444
Abstrakt:

Aerodynamic shape optimization of bridge deck is a very important task in the wind-resistant design of long-span bridges and often carried out via wind tunnel tests of sectional model or CFD simulation, both of which commonly need heavy workload, thus are time-consuming and costly. In this paper, an artificial neural network (ANN) model was developed to predict aerodynamic coefficients of a central-slotted box deck of a 1600m main span cable-stayed bridge during the aerodynamic shape optimization to enhance its performance of wind-induced static stability. The ANN model was built and trained with a data set of aerodynamic coefficients obtained from limited cases of wind tunnel tests. The effect of neuron numbers in the hidden layer on prediction accuracy was discussed. The results show that the built ANN model can accurately predict the aerodynamic coefficients and significantly reduce the workload of wind tunnel tests.

Stichwörter:
aerodynamische Koeffizienten
Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
Lizenz:

Die Urheberrechte (Copyright) für dieses Werk sind rechtlich geschützt. Es darf nicht ohne die Zustimmung des Autors/der Autorin oder Rechteinhabers/-in weiter benutzt werden.