0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Multiple view anomaly detection in images from UAS structure inspection using CNNs

 Multiple view anomaly detection in images from UAS structure inspection using CNNs
Autor(en): , ,
Beitrag für IABSE Congress: The Evolving Metropolis, New York, NY, USA, 4-6 September 2019, veröffentlicht in , S. 1984-1991
DOI: 10.2749/newyork.2019.1984
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.15 MB

A novel method for automated anomaly detection in images acquired in structure inspection based on unmanned aircraft system (UAS) by means of deep learning is proposed. Using UAS in the inspection ...
Weiterlesen

Bibliografische Angaben

Autor(en): (Bauhaus-Universität Weimar)
(Bauhaus-Universität Weimar)
(Bauhaus-Universität Weimar)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: The Evolving Metropolis, New York, NY, USA, 4-6 September 2019
Veröffentlicht in:
Seite(n): 1984-1991 Anzahl der Seiten (im PDF): 8
Seite(n): 1984-1991
Anzahl der Seiten (im PDF): 8
DOI: 10.2749/newyork.2019.1984
Abstrakt:

A novel method for automated anomaly detection in images acquired in structure inspection based on unmanned aircraft system (UAS) by means of deep learning is proposed. Using UAS in the inspection of large structures, rich data sets are produced, that can be used to support human inspectors. The image positions and orientations can automatically be reconstructed using structure from motion (SfM). A photogrammetric reconstruction of the 3D geometry is an established method for the analysis of deformations of structures. On this basis, a convolutional neural network (CNN) can be used to detect anomalies, such as cracks in the acquired images. While recently CNNs have been implemented with great success, the detection can further be improved by fusing the obtained results using geometry information gathered from photogrammetric reconstruction. The method leverages the imaging geometry reconstructed using SfM to significantly reduce the error rate of the network. The proposed method applies a fusion mechanism on detected anomalies in adjacent images to improve the detection performance.

Stichwörter:
Bildverarbeitung Photogrammetrie