0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Inverse Estimation of Influence Line Using Regular Traffic Vehicles for Bridge Weigh-in-Motion

 Inverse Estimation of Influence Line Using Regular Traffic Vehicles for Bridge Weigh-in-Motion
Autor(en): , ,
Beitrag für IABSE Conference: Risk Intelligence of Infrastructures, Seoul, South Korea, 9-10 November 2020, veröffentlicht in , S. 281-288
DOI: 10.2749/seoul.2020.281
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.2 MB

Investigating traffic loads and the number of vehicles on bridges is essential in order to grasp factors of deterioration in road bridges. Bridge Weigh-in-Motion (B-WIM) is a method for estimating ...
Weiterlesen

Bibliografische Angaben

Autor(en): (University of Yamanashi, Graduate School of Engineering, Yamanashi, Japan)
(University of Yamanashi, Graduate School of Engineering, Yamanashi, Japan)
(Tokyo Institute of Technology, Graduate School of Engineering, Tokyo, Japan)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Conference: Risk Intelligence of Infrastructures, Seoul, South Korea, 9-10 November 2020
Veröffentlicht in:
Seite(n): 281-288 Anzahl der Seiten (im PDF): 8
Seite(n): 281-288
Anzahl der Seiten (im PDF): 8
DOI: 10.2749/seoul.2020.281
Abstrakt:

Investigating traffic loads and the number of vehicles on bridges is essential in order to grasp factors of deterioration in road bridges. Bridge Weigh-in-Motion (B-WIM) is a method for estimating vehicle axle weight from the response of vehicles passing through a bridge. In this study, we construct a new B-WIM, in which vehicles are tracked from video images and influence line of the bridge is estimated from the response by local buses. As a method of tracking vehicles from video images, we applied Faster Regions with Convolutional Neural Network (Faster R-CNN), which is a method of image processing using deep learning. In addition, influence lines are inversely estimated by the direct search method using deflection responses by local buses. Consequently, the proposed method could estimate axle weights of a large vehicle with over 95 % accuracy.