0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Intelligent Upgrading and Application of Bridge Video Surveillance System Based on Computer Vision

 Intelligent Upgrading and Application of Bridge Video Surveillance System Based on Computer Vision
Autor(en): , , ,
Beitrag für IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022, veröffentlicht in , S. 1147-1153
DOI: 10.2749/nanjing.2022.1147
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.15 MB

The rapid development of computer vision provides a foundation for the intelligent upgrading of bridge video surveillance systems. In this paper, two intelligent upgrading methods were developed an...
Weiterlesen

Bibliografische Angaben

Autor(en): (CCCC Second Harbor Engineering Company LTD, Wuhan, China)
(CCCC Second Harbor Engineering Company LTD, Wuhan, China)
(CCCC Second Harbor Engineering Company LTD, Wuhan, China; Key Laboratory of Large-span Bridge Construction Technology, Wuhan, China)
(CCCC Second Harbor Engineering Company LTD, Wuhan, China; Key Laboratory of Large-span Bridge Construction Technology, Wuhan, China)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Bridges and Structures: Connection, Integration and Harmonisation, Nanjing, People's Republic of China, 21-23 September 2022
Veröffentlicht in:
Seite(n): 1147-1153 Anzahl der Seiten (im PDF): 7
Seite(n): 1147-1153
Anzahl der Seiten (im PDF): 7
DOI: 10.2749/nanjing.2022.1147
Abstrakt:

The rapid development of computer vision provides a foundation for the intelligent upgrading of bridge video surveillance systems. In this paper, two intelligent upgrading methods were developed and deployed. The first method uses edge computing equipment as the core, to quickly identify and locate vehicles across the large-span bridge by YOLOv5, which was trained by synthesized vehicle dataset, and then a large-span bridge vehicle digital twin system was built and deployed in Baijusi Yangtze River Bridge, which is suitable for scenarios with high real-time requirements. The another one is based on cloud computing, relying on ShuffleNetV2 to build a waterlogging recognition model and early warning system, which is suitable for scenarios with low real-time requirements. The results show that the constructed intelligent system upgrades the traditional passive access system to an early warning system with active recognition, which improves the intelligence of the system and meets the needs of engineering applications.

Copyright: © 2022 International Association for Bridge and Structural Engineering (IABSE)
Lizenz:

Die Urheberrechte (Copyright) für dieses Werk sind rechtlich geschützt. Es darf nicht ohne die Zustimmung des Autors/der Autorin oder Rechteinhabers/-in weiter benutzt werden.