0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Integration of BrIM in Bridge Management - Enhanced Predictive Functionality

 Integration of BrIM in Bridge Management - Enhanced Predictive Functionality
Autor(en): , , ,
Beitrag für IABSE Congress: Engineering for Sustainable Development, New Delhi, India, 20-22 September 2023, veröffentlicht in , S. 1105-1112
DOI: 10.2749/newdelhi.2023.1105
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 1.02 MB

Bridge lnformation Model [BrlM] is being evolved as a possible solution to become the one-stop solution for bridge design to management. Research is ongoing to present a concept of integrating BrlM...
Weiterlesen

Bibliografische Angaben

Autor(en): (UBMS Research Group [URG], Mumbai, India)
(UBMS Research Group [URG], Mumbai, India)
(UBMS Research Group [URG], Mumbai, India)
(UBMS Research Group [URG], Mumbai, India)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Engineering for Sustainable Development, New Delhi, India, 20-22 September 2023
Veröffentlicht in:
Seite(n): 1105-1112 Anzahl der Seiten (im PDF): 8
Seite(n): 1105-1112
Anzahl der Seiten (im PDF): 8
DOI: 10.2749/newdelhi.2023.1105
Abstrakt:

Bridge lnformation Model [BrlM] is being evolved as a possible solution to become the one-stop solution for bridge design to management. Research is ongoing to present a concept of integrating BrlM as the front end or back end and incorporating functionalities of the Bridge Management System [BMS]. Such integration is envisaged to maximize the utilization of the core capabilities of both BrlM and BMS. lntegration of BrlM and BMS will yield analytics essential for the prediction of deterioration models, risk analysis and prioritization and optimization of fund allocation. The use of 3D geometric models, Digital photography using photogrammetry software and Structural Health Monitoring to evaluate the performance of the bridge, have all resulted in enhanced capabilities, reliable prediction of deterioration models, and risk analysis based on a scientific approach. lntegration of BrlM with BMS has resulted in enhanced sustainability and predictive functions.

Stichwörter:
Photogrammetrie