0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Image-driven Bridge Inspection Framework using Deep Learning and Image Registration

 Image-driven Bridge Inspection Framework using Deep Learning and Image Registration
Autor(en): ,
Beitrag für IABSE Conference: Risk Intelligence of Infrastructures, Seoul, South Korea, 9-10 November 2020, veröffentlicht in , S. 269-272
DOI: 10.2749/seoul.2020.269
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.17 MB

This paper proposes an image-driven bridge inspection framework using automated damage detection using deep learning technique and image registration. A state-of-the-art deep learning model, Cascad...
Weiterlesen

Bibliografische Angaben

Autor(en): (University of Seoul, Seoul, South Korea)
(University of Seoul, Seoul, South Korea)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Conference: Risk Intelligence of Infrastructures, Seoul, South Korea, 9-10 November 2020
Veröffentlicht in:
Seite(n): 269-272 Anzahl der Seiten (im PDF): 4
Seite(n): 269-272
Anzahl der Seiten (im PDF): 4
DOI: 10.2749/seoul.2020.269
Abstrakt:

This paper proposes an image-driven bridge inspection framework using automated damage detection using deep learning technique and image registration. A state-of-the-art deep learning model, Cascade Mask R-CNN (Mask and Region-based Convolutional Neural Networks) is trained for detection of cracks, which is a representative damage type of bridges, from the images taken from a bridge. The model is trained with more than a thousand training images containing cracks as well as crack-like objects (hard negative samples). The images taken from a test bridge are input to a deep learning model trained to detect damages, which is further mapped on a large image of each bridge component registered using a commercial registration software. The performance of the proposed framework is evaluated on piers of existing bridges, whose external appearance was imaged using a DSLR with a telescopic lens. The results are compared with the conventional visual inspection to analyse the performance and applicability of the proposed framework.

Stichwörter:
Brücke