0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Enhancing Visual-based Bridge Condition Assessment for Concrete Crack Evaluation Using Image Processing Techniques

 Enhancing Visual-based Bridge Condition Assessment for Concrete Crack Evaluation Using Image Processing Techniques
Autor(en): , , , ,
Beitrag für IABSE Symposium: Long Span Bridges and Roofs - Development, Design and Implementation, Kolkata, India, 24-27 September 2013, veröffentlicht in , S. 1-7
DOI: 10.2749/222137813815776287
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.21 MB

Condition assessment is one of the most essential practices in bridge asset management to maintain the safety and durability of structures. Routine bridge inspection, a visual-based method, is regu...
Weiterlesen

Bibliografische Angaben

Autor(en):





Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Symposium: Long Span Bridges and Roofs - Development, Design and Implementation, Kolkata, India, 24-27 September 2013
Veröffentlicht in:
Seite(n): 1-7 Anzahl der Seiten (im PDF): 7
Seite(n): 1-7
Anzahl der Seiten (im PDF): 7
Jahr: 2013
DOI: 10.2749/222137813815776287
Abstrakt:

Condition assessment is one of the most essential practices in bridge asset management to maintain the safety and durability of structures. Routine bridge inspection, a visual-based method, is regularly performed by qualified inspectors to determine the condition of individual bridge elements manually using bridge inspection standards. However, the quality of a visual-based condition assessment relies heavily on the inspector’s knowledge and experience. The research presented here focuses on the development of an enhanced method to minimise the shortcomings of visual-based inspection. In this paper, we investigate the performance of RBF-kernel support vector machines (SVMs), a supervised machine learning technique, to increase the reliability of visual- based bridge inspection. The results of this study can contribute to minimising the shortcomings of current visual-based bridge inspection practices.

Stichwörter:
Bestandsbewertung Brückenmanagement