0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Development of Time-domain Aero-hydrodynamic Coupled Analysis Module by ABAQUS User Subroutine for Floating Bridges

 Development of Time-domain Aero-hydrodynamic Coupled Analysis Module by ABAQUS User Subroutine for Floating Bridges
Autor(en): , , , ,
Beitrag für IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024, veröffentlicht in , S. 915-920
DOI: 10.2749/sanjose.2024.0915
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.55 MB

A floating bridge differs from conventional bridges in that both wind and wave loads act as primary dynamic loads. The nonlinear interaction between the floating body's hydrodynamic response and th...
Weiterlesen

Bibliografische Angaben

Autor(en): (Seoul National University, Seoul, South Korea)
(Seoul National University, Seoul, South Korea)
(Seoul National University, Seoul, South Korea)
(Seoul National University, Seoul, South Korea)
(Florida Institute of Technology, FL, USA)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024
Veröffentlicht in:
Seite(n): 915-920 Anzahl der Seiten (im PDF): 6
Seite(n): 915-920
Anzahl der Seiten (im PDF): 6
DOI: 10.2749/sanjose.2024.0915
Abstrakt:

A floating bridge differs from conventional bridges in that both wind and wave loads act as primary dynamic loads. The nonlinear interaction between the floating body's hydrodynamic response and the bridge deck's aeroelastic response can significantly affect the entire system. However, existing commercial software lacks the capability to perform fully coupled aero-hydrodynamic analysis. Therefore, this study introduces a time-domain aero-hydrodynamic coupled analysis module for floating structures implemented through the ABAQUS User Subroutine. Validation of the developed method was achieved by comparing the response spectrum and RMS obtained from frequency- domain analysis. The developed time-domain aero-hydrodynamic analysis method enables potential possibility in future research, particularly for coupled aero-hydrodynamic analysis of long- span floating bridges.