0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Development of Thermoelectric Energy Harvester using the Temperature Gradient between Air and Bridge Materials

 Development of Thermoelectric Energy Harvester using the Temperature Gradient between Air and Bridge Materials
Autor(en): , ,
Beitrag für IABSE Conference: Risk Intelligence of Infrastructures, Seoul, South Korea, 9-10 November 2020, veröffentlicht in , S. 90-97
DOI: 10.2749/seoul.2020.090
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.25 MB

In this study, to establish a new method for power supply to BHM devices, thermoelectric energy harvesting using the temperature gradient between air and bridge materials was investigated through t...
Weiterlesen

Bibliografische Angaben

Autor(en): (University of Yamanashi, Graduate School of Engineering, Yamanashi, JAPAN)
(University of Yamanashi, Graduate School of Engineering, Yamanashi, JAPAN)
(University of Yamanashi, Graduate School of Engineering, Yamanashi, JAPAN)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Conference: Risk Intelligence of Infrastructures, Seoul, South Korea, 9-10 November 2020
Veröffentlicht in:
Seite(n): 90-97 Anzahl der Seiten (im PDF): 8
Seite(n): 90-97
Anzahl der Seiten (im PDF): 8
DOI: 10.2749/seoul.2020.090
Abstrakt:

In this study, to establish a new method for power supply to BHM devices, thermoelectric energy harvesting using the temperature gradient between air and bridge materials was investigated through the environmental measurement at bridge fields. First, the temperature difference between air and bridge materials was measured using a thermographic camera and thermocouples. Next, we attempted several thermoelectric generators and heat sinks (or radiators) to maximize the efficiency of energy harvesting and developed a Thermoelectric Energy Harvester (TEH). After that, we estimated the harvesting energy by formulating the thermoelectric characteristics of the developed TEH. Finally, we installed the developed TEH on an actual bridge. As a result, the electric power required for the MEMS sensors could be achieved.