0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Deterioration Prediction of Infrastructures with Time Series Data Considering Long Memory Effect

 Deterioration Prediction of Infrastructures with Time Series Data Considering Long Memory Effect
Autor(en): ,
Beitrag für IABSE Conference: Structural Engineering: Providing Solutions to Global Challenges, Geneva, Switzerland, September 2015, veröffentlicht in , S. 961-968
DOI: 10.2749/222137815818358132
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.08 MB

In order to compensate for shortcomings of asset management based on visual inspection data, asset management based monitoring data has got a lot of attention. However, there is little methodology ...
Weiterlesen

Bibliografische Angaben

Autor(en): (Osaka University, Osaka, Japan)
(Osaka University, Osaka, Japan)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Conference: Structural Engineering: Providing Solutions to Global Challenges, Geneva, Switzerland, September 2015
Veröffentlicht in:
Seite(n): 961-968 Anzahl der Seiten (im PDF): 8
Seite(n): 961-968
Anzahl der Seiten (im PDF): 8
Jahr: 2015
DOI: 10.2749/222137815818358132
Abstrakt:

In order to compensate for shortcomings of asset management based on visual inspection data, asset management based monitoring data has got a lot of attention. However, there is little methodology to apply time series data to conduct a decision making on asset management. In addition, long-term monitoring data of infrastructure have long memory effect because the deterioration of gradually progress owing to accumulating various deterioration factors such as traffic load, weathering, anti-freezing agent and etc. In this study, the authors propose ARFIMAX- GARCH (Autoregressive Fractional Integrated Moving average with eXogenous variables- Generalized Autoregressive Conditional Heteroskedaticity) model and attempt to demonstrate the applicability of the proposed model by studying concrete application cases.