0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Data-driven modeling of modal parameters of long-span bridges under environmental and operational variation

 Data-driven modeling of modal parameters of long-span bridges under environmental and operational variation
Autor(en): , , , ,
Beitrag für IABSE Conference: Risk Intelligence of Infrastructures, Seoul, South Korea, 9-10 November 2020, veröffentlicht in , S. 170-173
DOI: 10.2749/seoul.2020.170
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.17 MB

This study develops the multivariate model of modal parameters under the high variability of structural responses and environmental conditions. The automated operational modal analysis procedure is...
Weiterlesen

Bibliografische Angaben

Autor(en): (University of Illinois at Urbana-Champaign, IL, USA)
(University of Illinois at Urbana-Champaign, IL, USA)
(University of Illinois at Urbana-Champaign, IL, USA)
(University of Illinois at Urbana-Champaign, IL, USA)
(DM Engineering, Seoul, Korea)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Conference: Risk Intelligence of Infrastructures, Seoul, South Korea, 9-10 November 2020
Veröffentlicht in:
Seite(n): 170-173 Anzahl der Seiten (im PDF): 4
Seite(n): 170-173
Anzahl der Seiten (im PDF): 4
DOI: 10.2749/seoul.2020.170
Abstrakt:

This study develops the multivariate model of modal parameters under the high variability of structural responses and environmental conditions. The automated operational modal analysis procedure is implemented by synthesizing the algorithms of output-only system identification and density-based clustering algorithm. The Gaussian Process Regression is applied to accumulated modal estimates as well as corresponding environmental/operational conditions for examining the high degree of nonlinear variation in these monitoring data. The performance of the developed model is demonstrated for one-to-one regressions for multivariate structural health monitoring outputs in the presence of environmental and operational variation.