0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Damage characterisation using stand-off observations to enable recovery: the case of infrastructure affected by targeted attacks

 Damage characterisation using stand-off observations to enable recovery: the case of infrastructure affected by targeted attacks
Autor(en): , , , ,
Beitrag für IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024, veröffentlicht in , S. 785-791
DOI: 10.2749/sanjose.2024.0785
Preis: € 25,00 inkl. MwSt. als PDF-Dokument  
ZUM EINKAUFSWAGEN HINZUFÜGEN
Vorschau herunterladen (PDF-Datei) 0.55 MB

During conflicts, bridges are prime targets due to their strategic importance in transportation and economic growth. Their destruction hampers resilience efforts, delaying economic recovery. Limite...
Weiterlesen

Bibliografische Angaben

Autor(en): (University of Birmingham, UK)
(University of Birmingham, UK)
(University of Birmingham, UK)
(Centre for Research and Technology Hellas (CERTH), Athens, Greece)
(Centre for Research and Technology Hellas (CERTH), Athens, Greece)
(Centre for Research and Technology Hellas (CERTH), Athens, Greece)
(Brunel University London, UK)
(Brunel University London, UK)
Medium: Tagungsbeitrag
Sprache(n): Englisch
Tagung: IABSE Congress: Beyond Structural Engineering in a Changing World, San José, Cost Rica, 25-27 Seotember 2024
Veröffentlicht in:
Seite(n): 785-791 Anzahl der Seiten (im PDF): 7
Seite(n): 785-791
Anzahl der Seiten (im PDF): 7
DOI: 10.2749/sanjose.2024.0785
Abstrakt:

During conflicts, bridges are prime targets due to their strategic importance in transportation and economic growth. Their destruction hampers resilience efforts, delaying economic recovery. Limited research exists on characterising bridge damage via stand-off observations. This paper integrates diverse data sources and emerging technologies for comprehensive bridge damage assessment based on stand-off observations using remote sensing techniques. A case study in Ukraine employs Sentinel-1 SAR images, crowd-sourced data, and deep learning techniques to assess damage at various scales, from regional, to asset and component scale. This approach facilitates swift decision-making for infrastructure development and restoration planning. By providing crucial intelligence to decision-makers and funders, it aids in prioritising recovery investments and expediting post-disaster resilience planning for critical infrastructure.

Stichwörter:
kritische Infrastruktur